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LOCATING THE DISCONTINUITIES OF A BOUNDED FUNCTION

BY THE PARTIAL SUMS OF ITS FOURIER SERIES I: PERIODICAL

CASE

GEORGE KVERNADZE, THOMAS HAGSTROM, AND HENRY SHAPIRO

ABSTRACT. A key step for some methods dealing with the reconstruction of a function

with jump discontinuities is the accurate approximation of the jumps and their loca-

tions. Various methods have been suggested in the literature to obtain this valuable
information.

In the present paper, we develop an algorithm based on identities which determine the

jumps of a 2_r-periodic bounded not-too-highly oscillating function by the partial sums of

its differentiated Fourier series. The algorithm enables one to approximate the locations
of discontinuities and the magnitudes of jumps of a bounded function. We study the

accuracy of approximation and establish asymptotic expansions for the approximations

of a 2_r-periodic piecewise smooth function with one discontinuity. By an appropriate

linear combination, obtained via derivatives of different order, we significantly improve

the accuracy. Next, we use Richardson's extrapolation method to enhance the accuracy

even more. For a function with multiple discontinuities we establish simple formulae
which "eliminate" all discontinuities of the function but one. Then we treat the function

as if it had one singularity following the method described above.

1. INTRODUCTION

It is well known that the main difficulty in applying a Fourier series as a tool for approx-

imating a discontinuous function is the Gibbs phenomenon. Namely, the approximation

of a function by the n-th partial sum of its Fourier series is only of order O(1/n) for each

point of continuity of the function and oscillations are O(1) in an O(1/n) neighborhood

of the discontinuity point.

Two distinct approaches to resolve this difficulty have been suggested in the literature.

The first is to reduce the oscillatory behavior by filtering. The second is to use step func-

tions to reconstruct the discontinuous function. The latter approach was first suggested

by Gottlieb et. al. [17] and has been further developed in [1], [2], [5], and [16]. The key

step in the method of reconstruction suggested in [5] is the accurate approximation of

the location and the jumps of a given function.
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Later, Eckhoff [10], [11] considered a different approach to locate the discontinuities

using Prony's method. As a result he developed an efficient method of approximating

the locations of singularities and the jumps of a piecewise smooth function with multiple

discontinuities. The approximations are found as the solution of a system of algebraic

equations.

To justify the importance of allocating the discontinuities and the jumps of a function,

let us give a brief review of the idea of reconstruction of a function from its truncated

Fourier series as developed in the above mentioned papers.

Let g be a 27r-periodic function which is piecewise smooth on the period with a finite

number, M, of jump discontinuities. In addition, we assume that the first 2n + 1 Fourier

coefficients of the function are known. If G(8) = (_r-8)/2, 8 6 (0, 27r), is the 2_r-periodic

sawtooth function, then the assumption that the function g is piecewise smooth on [-z', _r]

with a finite number of singularities is equivalent to the following representation of the
function:

1 M-1

- [g],,,c(e-o,,,) + 9(e),
(1) g(8) = _ ,.,,=o

where 8,_ and [g]m,m = 0,I,... ,M- i, are the locationsof discontinuitiesand the

associated jumps of the function g, and 9 isa 27r-periodiccontinuous function,which is

piecewise smooth on [-_r,_r].

Hence, the problem is to find a good approximation for the constants 0,_ and [g],_,

given the first2n + 1 Fourier coefficientsof the function g. Then 9 can be recovered from

the partial sums of its Fourier seriesbased on identity(I) and the undesirable Gibbs

phenomenon could be avoided.

Recently another approach to recovery a piecewisesmooth function was suggested by

Geer and Banerjee. (See [4], [13], and [14].) The authors introduced a family of periodic

functions with "built-in" discontinuities to reconstruct a piecewise smooth function with

exponential accuracy. The main assumption of the method is knowledge of the jumps and

the locations of discontinuity of the given function. To find these, the authors suggested

the following: use the well-known formula of symmetric difference of the partial sums

of Fourier series which determines the jumps of a bounded function to obtain the first

estimate for the location of discontinuities; then utilize the modified least-squares method

to improve the accuracy of approximation. It should be mentioned that a method for

the recovery of a piecewise smooth function with exponential accuracy, utilizing the

Gegenbauer polynomials, was developed in a series of papers by Gottlieb and Shu (see

[18] and the indicated references). But again, the authors assume some knowledge of the

location of the singularities of the function.

In the present paper, we consider an essentially different approach for the approxima-

tion of the points of discontinuity and the jumps of a function based on special formulae

determining the jumps of a bounded not-too-highly oscillating function by the partial

sums of its differentiated Fourier series. It is shown that the largest local maximum of
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the absolute value of the differentiated partial sums of the Fourier series occur in the

vicinity of the actual points of discontinuity of the function. Furthermore, for a piece-

wise smooth function with one jump discontinuity, we establish asymptotic expansions

for the approximations of the location of the discontinuity and the magnitude of the

jump. Utilizing the expansion formulae, we use Richardson's extrapolation method to

achieve higher accuracy. For a function with multiple singularities, we establish simple
formulae which "eliminate" all discontinuities of the function but one. Then we treat the

modified function as if it had only one discontinuity, using the method described above.

2. DEFINITIONS

Throughout this paper we use the following general notations: N, Z+, Z, and R are the

sets of positive integers, nonnegative integers, integers, and real numbers, respectively.

L[a, b] is the space of integrable functions. W[a, b] is the space of functions on [a, b]

which may have discontinuities only of the first kind and are normalized by the condition

g(8) = (g(8+) + g(8-))/2, 8 E (a,b). (Here, and elsewhere, g(8+) and g(0-) mean the

right and left hand-side limits of a function g at a point 8, respectively). C[a, b] is the

space of continuous functions on [a, b] with uniform norm [[" I[[_,bl- By CP[a, b], p E N,

we denote the space of p-times continuously differentiable functions on [a, hi.

All functions below are assumed to be 2_r-periodic with the obvious exceptions.

If g E L[-Tr,Tr], then g has a Fourier series with respect to the trigonometric system

{1, cosrtS, sinnS}_= 1, and we denote the n-th partial sum of the Fourier series of g by

&(g; e), i.e.,
n

-0(g)+ Z(._(g) coske + b_(g)sinke),&(g;0) - 2
k--1

where

lf/ IF_(g)= g(r)cosk_d_ and b_(g)--- g(_)sink_dr

are the k-th Fourier coefficients of the function g.

By Sn(g; 8) we denote the n-th partial sum of the conjugate series, i.e.,

n

_.(g; 0) = Z (_k(g)sin_o- b_(g)coske).
k--1

Correspondingly, by _ we denote the conjugate function, i.e.,

limr-l't -Jh['g(o+r)-;g(o-r) dr},
_-o _ -_t:AT

which exists and is finite almost everywhere for any g E L[-x, _r] (d. [19, Theorem, p.

79]).
By K we denote positive constants, possibly depending on some fixed parameters and

in general distinct in different formulae. For positive quantities A_ and Bn, possibly

depending on some other variables as well, we write A,_ = o(B,_), A,_ = O(B,O, or
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A. _ B., if lim__._ A,_/B,_ = 0, sup_e N A,_/B. < oo, or K1 < A,,/B,_ < K2, respectively,

where/(1 > 0 and K2 > 0 are some absolute constants.

ooDefinition. Let A = ( k)k=l be a nondecreasing sequence of positive numbers such

that

oo I

(2)
k=l

A function / is said to have A-bounded variation on [a, b], i.e., f • ABV[a, b], if

If(ak)-/(bk)l
sup

171 k=l/_ ,_k

where II is an arbitrary system of disjoint intervals (a_, bk) • [a, hi.

We say that a function f is of harmonic bounded variation on [a, b], i.e., f • HBV[a, b],

if Ak = k, k • N.

Remark 1. For a reader unfamiliar with ABV[a, b] classes of functions we give some

basic properties of these classes.

The A-variation "measures" the total oscillation of a bounded function. ABV[a, b]

is a generalization of V[a,b], the class of functions of bounded variation (obviously

ASV[a, b] = V[a, b] if _,,_ = 1, k • N).

Waterman [23, p. 108] mentioned that the inclusion

(3) hSV[a, b]C W[a,b]

holds for any ABV[a, b] class of functions.

It is known as well [22, Theorem 3, p. 114] that for rBV[a,b] and ABV[a,b] Wa-

terman's classes of functions, defined by the sequences F = (Tk)k=l and A = ( J,)k=l,

respectively, the inclusion ABV[a, b] C FBV[a, b] holds if and only if _=_ 1/7k =

O(EL,
The constraint on the sequence A is natural, since if series (2) converges, ABV[a, b] =

B[a, hi, where B[a, b] is the class of all bounded functions on [a, b]. This makes it clear that

the HBV[a,b] class is sufficiently wide and "almost" covers B[a,b], since A = (kx+')F=1
converges for any e > 0. []

If there is no ambiguity, we shall usually suppress the dependence on the domain and

simply write C, ABV, etc.

3. MAIN IDENTITIES

The identitydetermining the jumps of a function of bounded variationby means of

the partialsums of itsFourier serieshas been known for a long time:
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Theorem 1 ([8] and [12]). Let g • V. Then the identity

lim S',_(g; 8) _ l(g(0+) _ g(0-))
(4) _-_ n n

is valid for each fixed 0 • [-Tr, n].

Golubov [15] generalized identity (4) for Wiener's [24] Vp classes of functions and higher

derivatives of the partial sums of Fourier and conjugate series. Further generalizations,

extending the results of Golubov to ABV classes of functions, have been obtained by one

of the authors.

Theorem 2 ([20]). Let r E Z+ and suppose ABV is the class of functions o/A-bounded

variation determined by the sequence h = ( )_k)k°°=l. Then

a) the identity

(5) lim S(2_+')(g;8) 2_1_)n--*o¢ n2r+1 -- ( r (g(8+)-g(O-))

is valid for every g • ABV and each fixed O • [-Tr, 7r] if and only if

(6) ABV C_ HBV.

b) There is no way to determine the jump at the point 0 • [-_r,n] of an arbitrary function

g Asv 0))o o.

Theorem 3 ([20]). Let r • N and suppose ABV is the class of functions of A-bounded

variation determined by the sequence A = ( k)k=l" Then

a) the identity

lim '5'(2_)(g; O) (--1)_+1 (g(O+) -- g(6--))
(7) n--o¢ n2T 2r_r

is valid/or every g • ABV and each fixed O • [-_',Tr] i/and only i/condition (6) holds.

b) There is no way to determine the jump at the point 6 • [-_r, _r] of an arbitrary function

g • AS. by means of the sequence (S(n2r-1)(g; 6))21"

Remark 2. Theorems 2 and 3 (see [20, Theorems 1 and 4]) implicitly include the

following statement: if g • C M HBV, then the convergence of (5) and (7) to zero is

uniform with respect to 6 • [-Tr, 7r]. []

Furthermore, as a simple corollary from Theorems 2 and 3 follow the identities which

determine the jumps of the derivatives of a continuous function.
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Corollary 1. Let r E N and r - p be a positive odd number, and suppose g E C p-1 is

such that g(V) E HBV. Then the identity

lim S(_r)(g;0) (- 1)_%-:_(g(V)(0+)- g(V)(0-))

is valid for each fixed 0 E [-Tr, 7r].

Proof. By virtue of (3), g(P) E HBV C W. Hence

(9) s(:)(g;e) = s(:-_)(g(_);e)

for r __ p. Then identity (8) instantly follows from (9) and Theorem 2. []

The following statement is proved similarly.

Corollary 2. Let r E N and r - p be a positive even number, and suppose g E C p-1 is

such that g(V) E HBV. Then the identity

(10) lira S(_r)(g;0)- (-1)r-_ -1
,_-o_ n'-P (r-p)_r (g(V)(_+)-g(V)(O-))

is validfo,. eachfixedo c [-_, ,_].

4. PRELIMINARIES

In what follows we need the following additional notations.

By 0m -= 0n(g) and [g]m = g(e_+) - g(0_-), m = 0,1,... ,M - 1, we denote the

points of discontinuity and the associated jumps of a function g • W. By M - M(g) we

denote the number of discontinuities (finite or infinite) of the function g • W.

Forafixedp• Z+,r• N, andg •Lweset

(r-p)?r j' (-1)_-_-_S(_)(g;8) ifr-pisodd,

(11) DT_(p;r;g;O) =- [n'-V (-1) r_--1S(_)(g; 9)if r - p is even.

For a fixed p • Z+, r • N, and M • N, the points 8m(p;r;g;n), m = 0,1,... ,M - 1,

are defined via the following condition:

(12) ]DT_(p;r;g;O_(p;r;g;n))l = max{IDT,(p;r;g;e)l : O • B(O_; A(g))},

where B(O,,_;A(g)) is the closed ball around 0,_ with the radius A(g) = ½ min{10,_ -

0a Imod27r : rn, k=0,1,...,M-1 and m:_k}.

To simplify notations, we sometimes omit fixed parameters and write DT,_(O), DT_(g; e),

or DT_(r; g; 0). Similarly we simplify the notation for 0,_(p; r; g; n).

By G(0) -- (Tr - 8)/2, 0 • (0, 2_r), we denote the 2_r-periodic extension of the sawtooth

function. If _ • R, then following the notations in [11] we set

G(_,;O) - G(O-._) and Gk+_('y;0) -- [ Gk('_; O)dO
J
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for k q Z+, where Go - G and the constants of integration are successively determined

by the condition

It is trivial to check that

// Gk(7; T)&" = 0.
7F

(13)

where

(14) D,_(8) = _ + cosk8 = 2,_
k=l n+

is the Dirichlet kernel.

t

?) 1&(O;e) = si 0 = o_(o)- -2,

for 0 ¢ 27rZ,

for 8 6 2xZ

Lemma 1. Let r E N be fired. Then

a) the closed form of the following sum ezists:

rt

(15) Ekr __ 1 T/,r+13t_ _Tb r _{___yl, r_l._... "

k=l r+l

where the last term contains either n or n 2.

b) The following expansion holds for every a- 1 E N:

q_k=_-_kll-¢(r+l) 1 1 1 1r rb r 2 Fb r+l

° B r(r+ s) 1 1
(1_) X-,f_IV-I _+

z._,, , (2s)! P(r + 1)n'+s+O(n "+a+l)'
$:2

where _(r) = Gk_x k-', r > 1, is the Riemman zeta flmction, P is the Gamma function

and Bs, s E N, are Bernoulli numbers.

Statement a) of the 1emma can be found in [9, p. 1]. Using the Laplace method,

the proof of expansion (16) is a simple corollazy of the integral representation of the

Hurwitz zeta function [3, Theorem 12.2, p. 251] and Watson's lemma [6, p. 253]. It was

generously offered by Prof. E. Coutsias [7].

Lemma 2 (Bernstein's inequality). If T, is a trigonometric polynomial of degree n E

N, then

HT,_ll[_,,b]< 2xn IIT_ll/_,b],
m b-ft

where[a,b]c [-_, _].
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Lemma 3. Let a function 9 E C q be such th.at g (q) fi V. Then

a) _ E C q-1 and O(q-') E Lip a for all a E (0,1), i.e., 10(q-a)(0) - g_q-1)(_)l -< Kl 0 - _l °

for some K > 0 and all O, r E R.

b) The following estimates hold:

(17) R.Cg),k.Cg)= o(_),

_,hereR_(g)- IIS,(g;")- gll[-,_,,_]and h,,(g) - IIL,(g;")- Ollt-,_.+r, e N.

Proof. Statement a) can be found in [19,exercise3, p. 81].As regards statement b),

by virtue of HSlder's inequality,sinceg E C q,we have:

(18)

R.(g), k.(g)
oo

< Y](lak(g)l + Ibk(g)l) = Y]_ lak(g¢0)l + Ibk(g(0)t
- kq

k=n k=n

( V/_ _k_ _q)1/2 (k_n(g(q) g(q)))1/2
_ a_( )2+ b_( )2

Meanwhile, itisknown [21] that ifg E C n V, then

(19) _(a_(g) _+ b_(g)_)= o().
kmn

Now (17) followsas a simple combination of (16),(18),and (19).[]

The followingaxe some basic propertiesof the function D(_)(0),r E N.

Lemma 4. Let _on - _o,(r) > 0 and _b, =--¢,(r) > 0 be the closest nonzero roots to the

point zero of the equations D(,2_)(O) = 0 and D(,2"+a)(O) = O, respectively. Then for any

fixed r E Z+ :

-_).

d) (-1)_+1D(_2"+')(0) is increasing on [-_o,(r + 1), _o,(r + 1)], concave on [-_o,(r + 1),0]

and conve:c on [0, _o,(r + 1)].

e) (-I)_D_')(O) is a 27r-periodic even and smooth function with the global mazimura

attained at 0 = O. In addition, the sequence of the absolute values of the local maziraa is

decreeing as a functionofo _ [o,_-]and

(20) ID(2_)(0)I > K(r)lD(2_)(¢.)l,

where K(r) > 1 and n E N.
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Proof. a) Let us prove the statement for an even n, i.e., n = 2n. By (14) we have

signD_)(i) = sign (-1) _ k 2_ cos + cos
k=n+l

k=0 2n

n--1 kT["

= sign(-1) _+1.(21)

._lguD_,(e) = sigu(-1; for= c N ande Z [0,_'/4=].The lattercorn-Again by (14), " (2,)

bined with (21) and the Mean Value Theorem instantly guarantees _,_ 6 (x/4n,_/2n).

Similarly we treat the case when n is odd.

b) The statement is proved analogously and we omit the details.

c) According to (14) and (15)

n

(22) (-1)"+aD(2"+a)(o) = E k2"+lsinkO < Y_ k2"+' _-n2"+L
k=l k=l

Meanwhile, since _o,_ 6 [Tr/2n, _r/hi (see a)), taking into account the wen-known inequality

2e/_r < sine < Ofor O 6 [0,7r/2], we have

_, 2 [n/2l 1 [n/2l(23) k_+1sin(_o.)> - Z k_'+_o-> - _ k_'+__ '_+_,
k=l 71" k=l 77, k=l

where [a] means the integer part of a number a. Combination of (22) and (23) completes

the proof of statemant c).

d) Since the function (-1)_+lD_2"+2)(e) is positive on [-_vn(r + 1), _o,_(r + 1)] (see (14)),

(-1) "+1D(2"+a)(e)is monotonic on the interval. Furthermore, (-1) (_+l)D_2_+z)(e) is pos-

itive and negative on [-_bn(r + 1),0] and [0,_b,_(r + 1)], respectively. But _,_(r + 1) <

_.(r+ i) (see a) and b)). Hence (-I)" +1 D(2.+ i)(0)is concave and convex on [-_o.(r + I), O]

and [0,_o,,(r + 1)], respectively.
e) Let us prove inequality (20) as the rest of the statement is trivial. It is clear that

(24) q_ - _ k2_ k2_ > 1
k=l k>n/4

for n > 4. But by virtue of (15), lim,_._ q, > 1 as well. The last combined with (24)

implies the existence of K(r) such that

(25) q,_ > K(r) > i

for n > 4.
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0
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--6

0 1 2 3 _ 5 6

Besides

FIGURE 1. n = 16.

ID_2r)('¢'") I I (k%knE[r/2,31r/2] ken#[r/2,3r/2]) k2r
= E + E cosk¢ l

n

(26) < Z
k>n/4

since ¢,_ satisfies the estimate b) and the sums in (26) have different signs. The rest

instantly follows from (24)-(26), and the identity D_2")(O) = (-1)" _=1 k2". Validity of

(20) for n < 4 is trivial. []

5. GENERAL IDEA OF ALGORITHMS AND THE ACCUKACY OF APPROXIMATIONS

This is the general idea of all the following algorithms: according to identities (5) and

(7), if g 6 HBV, then for a fixed r 6 N, p = 0, and sufficiently large n 6 N, the

function IDT,_(8)I, 8 • [-_r, _r], (see (n)) must attain the largest local maximum nearby

the actual points of discontinuity of the function 9, since at the the points of countinuity

of g, DT,(8) = o(1) by virtue of Theorems 2 and 3. (The proof of Theorem 4 includes

a rigorous proof of this statement.) Hence we search for the singularity locations of a

function by locating the largest local spikes of the differentiated partial sums of its Fourier
series.

Figures 1-4 represent the graphs of the normalized differentiated partial sums _S',_(g; .)

of the function (65) with increasing n. They illustrate the dynamics of creation of sharp

spikes in the vicinity of the actual points of discontinuities of the function.
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FIGURE 4. n = 128.

Now we study how wellthe points 8,n(n)and the values DTn(_,,(n)) approximate the

points of discontinuity0m and the jumps [g]mof a function g.

5.1. Approximation to the points of discontinuity. Let us firstconsiderthe worst

possiblecase.

Theorem 4. Let p = 0 and r E N be f_ed, and suppose g E HBV _ a .function _th a

finite number, M, of discontinuities. Then the estimate

1 1

(27) 8,,(n) = O_ ÷ [g]_A(g)o(n)

is valid for each fized m = O, 1,... , M - 1.

Proof. Without loss of generality let us make several assumptions. We assume that

M = 2 and r -_- 2r+ 1 is an odd number. The points of jump discontinuity of the function

g are Oo = 0 and 01. We shall prove estimate (27) for 00 as it is completely analagous for

01 by virtue of the periodicity of g.
Now let us set

(28) _(e) = g(o) - [g]°G(0)- [g]lG(01;O).
T T:

It is obvious that

(29) ._ E C M HBV,

since continuity of _ follows from (28). Moreover, since G E V C HBV and HBV is a

linear vector space (see [23, p. 108]), _ E HBV as well.



LOCATINGDISCONTINUITIES 13

Besides by virtue of (11), (13), and (28)

DT,(g;8) = [g]°DT,(G;8) + [g]l DT,(a(81;.);e) + DT,(_;8)
7r 7v

= (-1)_(2r + 1)[g]0D_>(e)

(-1)_(2r + 1)[g]ID¢,_)(e- 81)+ DT,(_;0)
-_ n2r+ 1

(30) - Io(,_;e) + I1(_;0)+ SR(,_;e).
It is obvious that II0(n; 8)1 attains the global maximum at 8 = 0 and without I_(n; 8)

and ER(n; 8) terms we could ezac_.ly locate the discontinuity point 6o = 0 just searching

for the global maximum of ]DT,_(g; 8)1 on the period. By virtue of (29) and Remark 2,
ER(n; 8) contributes a small error independent of 8 6 [-Tr, r], i.e., ER(n; 8) = o(1). But

according to (14) and (30)

/1(n, 8) = (-1)'(2,+ 1)[g]1 (sin((n_+½)(_..88_8,))) 0")
n 2"+] _ _2sin

2r-1 21- _ kTr= (-1)'(2r+l)[g]l(_o2k(n+)ksin((n+ )(8-81)+ T)
n2r+l

k=O

(31) - [gh or!)

as well for 8 C B(0; A(g)). Hence

1 _2, sin ((n
+(_+_, + ½)(8-81) + _))

2 sin
2

(32) _. _ IIIx(_;,) + ER(n; )11[-_<_),_¢_>)-- o(1).

Consequently, by virtue of statement e) of Lemma 4 and (32), we have

(33) IIo('_;0)1- E. > IIo(_;_.)1 + _.

for s_fl_icientlylarge n e N. But (33) combined with (12), (30), and statements a) a-d
e) of Lemma 4 already guarantees

7f

leo(_)l< _. < -
r$

for sufficiently large n E N.

Next, to achieve a more accurate estimate, namely (27), we use a simple estimate of a

root of an equation.

First, let us mention that since 8o(n) is the extremum point, then

(34) DT_(g; Oo(n)) = O,
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which itself implies (see (30))

(35) I'o(n; e0(n))= -I_(n; Oo(n))- ER'(n; 0o(n)) - Tn(Oo(n)),

where T,_ is an n-th degree trigonometric polynomial.

According to estimate (32), (35), and Lemma 2 we have

1

(36) IIT.IIt_A(9),A(9)I= _(g)o(n).

Let us assume for simplicity that [g]0 > 0. Furthermore, we know Io(n; 8) is odd

decreasing and convex on [-_o,,(r -t- 1), 0] and concave on [0, _o,,(r + 1)]. (See statement d)

of Lemma 4.) Hence the line passing through the points (:t=_o,(r + 1), I'o(n; =Ecp,,(r + 1)))

will occur below the positive part of the function Io(n; 8) and above its negative part.

So, for sufficiently large n E N, 00(n) will satisfy the inequality

(37) le0(n)l< I_o(n)l,

where 80(n) is the solution of the following equation

(38) I'°(n;_°_(r + 1)).0 = T,,(0).
v.(r + 1)

Here the left hand side of the equation represents the above mentioned line.

Hence, by virtue of (11), (13), (30), (36), and statements a) and c) of Lemma 4, we
obtain

1 1

00(n)- Lq]oh(g)o(_),

which combined with (37) completes the proof. []

Let us now consider a more typical case.

Theorem 5. Let p = 0 and r E N be fixed, and suppose g is a piecewise continuous

function such that g' E HBV. In addition, we assume that M(g) and M(g') are finite.
Then the estimate

(39) 0_(g;n)= 0_(g)+ _ [lifO( )

is valid for each rn = 0, 1,... , M(g) - 1.

+ _(g--__,_.,

Proof. Again for simplicity let us assume that M(g) = 2, M(g') = 1, r - 2r -t- 1 is

odd, and 8o(g) = 80(g') = 0. Furthermore, let us introduce a function ._ now via the

following identity:

(40)

1

1 _[g]_G(O_;o) l[g']oG,(6).
_(0)= g(0)- _ =o
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Since the conditions of Theorem 5 in particular imply the conditions of Theorem 4, by

similar arguments we conclude that O0(n) satisfies the estimate (37), where O0(n) is the

solution of equation (38) now with

(41)

T.(e) - -If(n;0)- (I0(1))'(n;8)- ER'(n;8)

[g']0n_.' _,_ .
[g]' DT_(G(8,; .); O)- ----_,.,1,8) - DT_(9; 8).

7r

Hence, to complete the proof it is enough to estimate T,.

By the construction g' E C n HBV (see (29)). Consequently, according to (11), (41),

and Remark 2

(42) IIER'(n; )llt-_.,._l= o(1).

The estimate for I1 directly follows from (31). Namely,

(43) ' [g]' 0(1).
IIZ_(n;.)llt_,,(_,,,(_)l-- ZX(g)

As regards I O), by virtue of (11), (13), (15), and (41) we have

(44) ll(g'>)'(n;")llt-_,,i= [g']00(1).

The combination of (37), (38), (41)-(43), and (44) completes the proof. []

Now we turn our efforts to study probably the most interesting case: a 2_r-periodic

piecewise smooth function with one jump discontinuity. As expected, the approximation

in this case is significantly more regular. Namely, the following statement holds.

Theorem 6. Let p = 0 and r 6 N be fixed, and suppose the function g piecewise belongs

to C q, q > 2, and has a single discontinuity a_ Oo 6 (-Ir,Tr). In addition, we assume that

g(q) G V. Then there exist constants K1,K2,... ,Kq such that

K1 K2 Kq o 1 )(45) Oo(r;n)= Oo+V+ _ +... nq+---r+ (_--_ •

Namely

I I

r + 2[g]o r+ 2[g]o
(46) KI--- and K2-r [g]o r b]o

fort>2.

In particular, if the derivative of the function g does not have a jump at Oo, then the

approximation has the order O(1/n4).
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Proof. Let us first assume that r >_ q. We shall establish an algorithm for computing

the constants K1, K2,... , Kq, and perform the actual computation for K1 and K2.

Without loss of generality we assume that 8o = 0, r - 2r + 1, and q - 2q + 1. Now we

consider the function 9 defined by

1 2q+_

(47) _(o) =g(o) - 7 _ [g(_)]oC_(o).
k=0

Since the function g in particular satisfies the conditions of Theorem 5, by virtue of

(39) there exists a constant K0 such that

go
(48) 16o(,_)1< ,-_-
for n E N.

As we know (see (34) and (47)), 0o(n) satisfies the following identity

1 2q+l
- _ [g(k)]oDT:(Gk;8o(n)) + DT_(_;8o(n)) = O.

(49) DT_(g; 8o(n)) = Ir k=o

By construction _(2q+1) E C N V C C n HBV. Hence by Remark 2 and Lemma 2 we

have

(50) s(2"+%_;e)= s(._'+'-_q)(._(2q+l);e)= o(r,_'+_-_D
uniformly with respect to e E [-_r,x].

Furthermore, expanding expression (49) into a Taylor series around zero on the interval

[-Ko/n2, Ko/n 2] and taking into consideration (11), (13), (48), and (50), we obtain:

• 1D(2_+6)(O)Oo(n 5 ...[g]o(D$2"+2)(O)eo(n) + _D(2"+4)(0)eo(n) 3 + _. - , , . ) +

1 n(2q+2,+3)(. _(2Ko) 2q+2

-I (2q + 2)!"" t#o,,) 714q+ 4 )

1 D(2,.+2)(O)Oo(n : _D(2,+4)(0)Oo(n) 4 ++[g']0(D(_')(0)+ _ - ,.. ) + ..

1 n(2q+2,+l)r. _(2Ko) 2q+1
+ (2q + 1)[ ''''_ _,m,-) _ )

,2Ko+ [g(:,+,)]o(D(_,-:_)(o) + ,,(=,+,-:,)r. ,
/')'n _,_2¢/+1,n1 ,1_--'_ ]

(51) + o(r,_'+_-_)= O,
where I#k,,_l < Ko/n2, k = 0,1,... ,2q + 1.

It follows from (15) that allerror terms in the Taylor expansion have order O(n:'-2q).
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The expression for D_r)(0), r C Z+, (see (15)) suggests seeking an expression of 8o(n)

in the form (45).

According to equation (51), since the error term has an order o(n2_-_q+l), all coefficients

of n k, k >_ 2r - 2q + 1, must equal to 0. This condition generates the set of equations

with respect to the yet unknown constants K1, K2,... , K2q+l.

We set up one by one the equations for powers of n, with decreasing order of de-

gree, starting from n 2_+_. It is clear that by (15) and (51), only two terms, namely

[g]0D(2"+2)(0)80(n) and [g']oD(2")(O) contribute n 2_+1 and n 2". Consequently, the com-

parision of the coefficient leads to the following system of linear equations with respect

to K1 and K_ (see (14), (15), and (45)):

7%2r'I'3 K1 ?%2r+I

+ 3.2 + +------7= 0

and

K1)_2r@3 K2 T/2r+2 i TI,2r

¥ 2 + (-1)'[g ]0--_- = 0,

which instantly implies (46).

Furthermore, let us observe that the highest degree of n contributed by each term of the

[ r)(2r+2_-2_){flh_^(_'h21-{-lh21-1 _ _--- 1 2, q + 1, ignoring the constantssequence QI -= k_n kvy_uv-y ]i=o , , ... ,

of expansion, is 2r - 21 + 3.

Now we proceed by induction. Let us assume that the constants KI,K2,... ,K2_-3,

and K21-2 are already defined by setting up equations with respect to the coei_cients of

n degree less then 2r - 2(l - I) + 3. Next, we shall show that a new system of equations

for the coefficients of n 2_-2_+3 and n 2_-2t+2 represents a system of linear equations with

respect to K21-1 and K2_. In addition, the determinant of the system is nonzero, and

hence the system is consistenl

Indeed, the only terms which may contribute K21-1 and K2_ unknowns are in the

sequences Qj, j < I. Hence, by (15) and (45) we have

_%2rT2j-2i÷l _1728)n(2_+2J-2i)(O)8°(n)_J-'-I = 2r + 2j - 2i + 1 + lower degree te

(K_ K21-1 K2t 1 \ 2j-i-1(52) × _-+...+ n_----7-+-_7+O(--_)) •

Consequently, the highest degree of n contributed by this product with factor K2t-1 is

n _+2j-2_+_ (K_ 2_-i-_ K_t__ ,,, n___+_+_(__3)
2r + 2j - 2i + 1 \_-5-] n2_ -

But, 2r-2I+3+2(1-j) < 2r-21+3 unless j = 1. Hence only the sequence

Q_ = {D(_'_+2)(O)8o(n),D_2_)(O)} contributes the constant K2,-1 and it clearly appears

in the first degree in the expression for 8o(n). (We treat the case for K2t similarly.) In

addition, the determinant of the linear system with respect to K:___ and K:_ is triangular
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with nonzero diagonal entries,(-1)_+1[g]0/(2r-I-3) _ 0 and (-1)_+I[g]0/2_ 0, and that

guarantees the solvabilityof the system.

Finally, the equation for rt2"-2_+3 defines K2t-I, so the equation for rt2_-2q+I will

define K2q+1. Let us mention that the coefficientsKI,K2,... ,K2_+z depend only on

[g]0,[g']0,...,[g(2_+I)]0.
To prove the theorem forthe caser < q we need some minor changes in the arguments.

First,one has to use expansion (16) for D_2_+2#-2i)(0)in estimate (52) as soon as 2r +

2j - 2i < 0. Second, to estimate the error term in (49), i.e., (50), let us mention the

following: since .q(2,+2) E C 2q-2"-1, then by virtue of (17), expanding # into Taylor series

around zero on the interval [-K0/n 2, Ko/n2], we have:

(53)

1

= s.(_("'+_);Oo(.))= #("'+")(eo(.))+o(.___,__)

= ._(_'+_)(o)+ ._(_'+")(O)Oo(,_)+...
1 2q--2r--1

_(_+_)r,,_(2K°)_-_" o( i
-_(_.q__.,._1)!_,,,-,,,_,__,,__+ ___.__)

which, ignoring the constant factor,representsthe desired estimate for the error term.

The restof the proof iscompletely analogous. []

Taking an opportunity of the lucky similaritybetween the coefficients(46),using a

simple linearcombination of expansion (45) for _ and r, 2 < _ < r, we significantly

improve the accuracy of approximation. Namely, the followingstatement holds.

Corollary 3. Let p = 0 and suppose a function g piecew-ise belong to C q, q > 3, and has

a single discontinuity at Oo E (-Tr, _r). In addition, we assume that g(q) E V. Then for

each fi.zed f and r E N, 2 < f < r, there ezist constants Ka, K2,... , Kq such that

(s4) 2(_-_) KI Kq I_(_+ Oo(_;_)= Oo+ _V+'" + _ + °(_-_T)-9.(_-

5.2. Approximation to the jumps. Now let us study the approximation to the jumps
of a function.

Theorem 7. Let p = 0 and r E N be fized, and suppose g is a piecewise continuous

function such that g' E HBV. In addition, we assume that M(g) and M(g') are finite.
Then the estimate

DT_(g;8,_(n)) = [g],_+ O(1)

is valid for each m = O, 1,... , M(g) - 1.
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Proof. Again for simplicity we assume that M(g) = 2, M(g') = i, r _----2r + I is an

odd number, and 6o(g) = 6o(g') = 0. By virtue of (40) we have

DT,(g;8o(n)) - [g]°DT_(G;8o(n)) + [g]l DT_(G(81;');6o(n))
7F T

(55) + [g]°DT_(Cl;Oo(n)) + DT,(O;Oo(n))
7f

Further analysis is trivial as we take the Taylor expansion of (55) around zero on the

interval [-Ko/n2,Ko/n2]. By virtue of (11) and (13) we get

DT,_(g;Oo(n)) = _-37_7 (D(20(0) +

+ (-1)_(2rn 2_+1+1)[g]ln(2,.)(0o(n ) -0_)

(-1)_(2r + 1)[g']0n(2__l)(80(n))
+ n2r+l

(--1)'(2r ÷ 1)Tr S(2,)(,6o(n)),(56) + n_,+1

where lv,_l < Ko/n 2.

Taking into account that _' E C n HBV, the rest of the proof follows from (14/, (15/,

(31/, (56/, and Remark 2. []

Now, an interested reader will easily fill out the details of proof for the following

statement.

Theorem 8. Let p = 0 and r E N be fixed, and suppose a f'anction g peicewise belong to

C q, q _ 2, and has a single discontinuity at Oo E (-;T,7r). In addition, we assume that

g(q) E V.

(57)

Namely

(58)

and

fort>2.

Then there ezist constants K1, K2,... ,Kq such that

DT_(r;Oo(r;n))=[g]o+gl +K2 gq 1+ ... + n-;+ o(n-7).

r

K1 = _[g]0

r + 9.[g"o r + 9.[g']0
g2 = _'_[g]o + --_ J r [g]0

Extrapolating expansion (57) in r based on identity (58/, we improve the accuracy of

aproximation. Namely, the following statement holds.
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Corollary 4. Let p = 0 and suppose a function g piecewise belong to C q, q >_ 2, and has

a single discontinuity at Oo E (-_r, rr). In addition, we assume that g(q) E V. Then for

each .fixed _ and r E N, 2 <_ _ < r, there e_ist constants K1, K2,... , Kq such that

r

(59)
r--r

KI Kq 1
f DT_(r;Oo(n)) = [91o + _- + ... + -- + o(_-_-).r -- _ nq

5.3. Approximation to the discontinuities and the jumps of derivatives of a

function. As a simple corollary of (8), (9), (10), and Theorems 6 and 8 we obtain

estimates for the location of points of discontinuity of the derivatives of a continuous

function and the associated jumps. Below we represent just typical statements.

Theorem 9. Let a function g G U p-l, p E N, piecewise belong to C q, p + 2 < q, and

suppose g(P) has a single discontinuity 8o E (-_r, 7r). In addition, we assume that g(q) E V.

Then for each fixed r E N there ezist constants K1, K2,... , Kq_p such that

KI Kq_p i
(60) = Oo(g + +... + + ).

Namely,

fort --p > 2.

K1 - r - p + 2 [g(P+l)]0 and K2 = _r -- p 3I- 2 [g(p+l)]0

r- p r - p [g(')]o'

Theorem 10. Let a function g E U p-l, p _ N, piecewise belong to C q, p + 2 <_ q,

and suppose g(P) has a single discontinuity 8o E (-Tr, r). In addition, we assume that

g(q) E V. Then for each fixed r C N, there exist costants Ka,K2,... ,Kq_p such that

Namely,

Kq_p 1
DT,_(p; r; g; 00(p; r; g; n)) = [g(')]o + K--!n+"" + --nq-, + o(_).

fort --p > 2.

K1 - r-p

6. DESCRIPTION OF THE ALGORITHM

Now we describe the main idea of the algorithm which we propose to locate the points

of discontinuity. For simplicity, we assume that the function is piecewise smooth.

In case the function has a single discontinuity, according to Corollary 3 we search for the

global maximum of IDT,(0)] for fixed f and r, 2 < f < r. Afterwards, utilizing expansion

(54) and applying Richardson's method of extrapolation we improve the accuracy.

The situation drastically changes if the function has more than one point of disconti-

nuity. In this case we do not have expansion (54) for the approximation.
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To overcome this difficulty we generate, for a fixed r E N, the sequence of partial sums
of Fourier series of functions M-1(gm)._=0, defined via the recursion relation

(61) gm+l(e)= (1- cos(0- 0o(gm;n)))dg_(e),

where go = g, d E N is fixed, and 0o(gm;n) is the location of ]DTn(gm;8)l's global

maximum on the period for sufficiently large n E N.

The idea behind generating this sequence is to "eliminate" (at least numerically) the

discontinuities of the function g one by one by simply searching for the global maximum

of the function IDT,_(9,_ ;0)1 on the period. In other words, "removing" the highest jump

of the function, we can see the second largest jump.

A straightforward computation based on simple trigonometric identities generates the

Fourier coefficients of gm+l via the Fourier coefficients of g,_. Below we represent the

identities for d = 3 (see (61)):

5

- -_cosOo(g,_;n)(ak-l(g_)+ak+l(gm))+ sinOo(gm;n)(bk-l(g_)-b_+l(gm))

3 3 sin20o(g,_;n)(bk_2(gm) - bk+2(gm))+ _ cos200(g_;=)(a__2(g_)+ ak+2(gm))-
1 1

- - cos 300(g_; n )(a_-3(g_ ) + ak+3(g_ )) + _ sin 300(g_; n)( bk_3(gm ) - b_+3(g_ ) ),8
(62)

and

bk(g_+l)

(63) 8

15 15

- _- cos00(g_;=)(b___(g_)+ bk+l(gm))- -_ sin00(g_;=)(___(g_)- -_+_(g_))

3 3 sin2Oo(g_;n)(ak_2(g,_) - ak+2(gm))+ _cos_0o(g_;=)(b___(gm)+ bk+_(g_))+
1 1

- - cos 300(gin; n )(bk_3(g_ ) + bk+3(g_ )) - _ sin 300(gin; n )(ak_3(g,_ ) - ak + 3(gin ) ),

where ak(gm+_) = a-k(gm+l) and bk(gm+_) = -b-k(gm+l), k E N.

Our approach to eliminate the points of discontinuity could be justified by the following

observation: multiplying a function by the factor (1 - cos (8- Oo(gm;n))) d we are not

adding a new point of discontinuity but significantly reducing the jump of the function

gm at 8m. More precisely, if 6,_ - 6(gin;n) = O(n-V), then the function gm+_ (see (61))

at the point 6,_ will have the jump of (1 -cos (6,_ -Oo(gm;n)))d[g,_+_]o "_ n-_P[gm+_]0.

Figures 5-7 illustrate a step by step "elimination" of the points of discontinuity of

the function (65) utilizing formulae (62) and (63). They correspond to the graphs of

!S',_(gm; .) for m = 1, 2, 3.
_t
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Summarizing a/l the above we suggest the following a/gorithm, which we have imple-

mented using Ma_ema_ica:

Steps 1-3 find initial approximations for the discontinuities of the function 9. These are

then refined in Steps 4-5.

Step 1 (Initialization):

Select some fixed d 6 N, which will be used throughout the entire algorithm.

Let r = 1; this value is used in defining DT,(gm; 0) in Steps 2 and 3. Let 2rh + 1

coefficients of the function 9 be given. Select some small value for n0 (usually

no = 16); this value should be a power of 2 and is used as the starting subscript

of the sequence constructed in Steps 2a and 2b. Let m = 0 and 90 -= g.

Step 2 (Find a discontinuity, if one exists):

Step 2a (Find the maximum of IDT,_(gm; 0)] over the period):

Step 2a(1): Using the adaptive plotting routine internal to Mathe-

raatica, with the number of initial points set at the maximum of 25

(the default) and n_ (to ensure that we do not miss the maximum),

determine the point constructed by the plotting algorithm which has

the largest value of IDT,_o(9_; 0)1.

Step 2a(2): Using the 0-value of the point found in Step 2a(1), ap-

ply Newton's method to find the 0-value where the maximum of

[DT, o(gm; 0)[ occurs as the solution of the equation DT_o(9,_; 0) = O.

Let us denote the 0- and corresponding[DT,_o(9_; 0)[-value by O(no)

and
Step 2b (Determine if the 0-value found in Step 2a is a discontinuity):
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Form the sequences 0(no), 0(2no), 0(4no), ... and T(no), T(2no), r(4n0),

... by successively doublingno and finding the maximum of tDT_(gm;e)l.
Find the maximum by using Newton's method, using the previous 0-value

in the sequence as the initial approximation.

Stop when one of three conditions arises.
Condition 1: The ratio of two successive _'-v_lues is less than 0.6

(see (57)). The point is not a point of discontinuity. Go to Step 4.
Condition 2: The estimated relative error between two successive

0-values is less than some predefined tolerance. The point is a point

of discontinuity. Go to Step 3.

Condition 3: The number of terms in DT,_(g_; 0) exceeds 2nl. The

point is a point of discontinuity. Go to Step 3.

Step 3 (Remove the discontinuity):

Let 0,_ denote the final value of 0 determined in Step 2b. Increase m by 1,

define the Fourier coefficients of the function g_+l (e) = g_(e)(1 -cos(O - e_))d,

utilizing (62) and (63), and return to Step 2.

Step 4 (Refine the estimates of the points of discontinuity):

Two conditions can arise: no discontinuities were found in Steps 2 and 3 (termi-

nate the algorithm) or one or more discontinuities were found (continue). Let M

be the number of located discontinuities and 00, 01, ... , 0M-1 their locations.

Select some 2 _< _ < r and some n > no, n = 2p, to be used in Step 4a.

Do the following for m = 0 to M - 1.

Using the values of 0m current at the time form the function

g_(e) M-1= g(O) I'I_=0,icm (1 - cos(0 - 0i)) d, and apply the extrapolation

method of Step 4a.

Step 4a:

Form the sequences 0(_; no), 0(_; 2n0), 0(_; 4n0),..., 0(_; n) and e(r; no),

e(_;2no),o(_4n0),..., o(_;n), whichrepresentthe 0-v_ueswhereIDr_(g:_;0)l
takes on its maximum value. This can be done efficiently by using New-

ton's method with 0m as the starting point and solving the equation

DT_(g_; O) = O.

Using the extrapolation defined by equation (54), form the sequence

2--(;- 2(_-_)
:[or n = no, 2n0, 4n0, • • • , n.

Perform Richardson's extrapolation on the sequence O(no), 0(2no), 0(4no),

..., 0(n).
Replace 0m with the final value obtained.
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Step 5 (Additional refinement of the estimates):

Ifonly one discontinuitywas detected in Steps i-3,then stop. Otherwise repeat

Step 4 a second time.

Our implementation uses Ma_hematica's capabilityto do high-precisionarithmetic

and track the lossof precisionthat occurs duc to accumulating roundoff error. Besides

displaying the finalanswers itdisplaysthe number of digitsof precisionthat remain.

7. SOME NUMERICAL RESULTS

In order to illustratethe numerical resultsobtained by the described algorithm, we

willconsider severalexamples.

Firstwe considera 2_r-periodicfunction g with two discontinuitiessuch that g E HBV,

namely

if <0
+2 if0<8<_r

It is obvious that the function g is not piecewise absolutely continuous and therefore

the methods suggested in [4], [5], and [11] fail. Still according to Theorem 2 we should

obtain an o(1/n) approximation. We find the absolute value of the largest error for

approximation to the points of discontinuity as follows:

IN 32]64 128256 1Location-error 6.1(-2) 2.2(-2) 6.4(-3) 2.0(-3)

The following piecewise smooth function was considered in [5].

sin_ if0_<8<0.9e if 0.9 < 8 < 2_-(64) g(8) = -sin

Below we present a detailed description of all computations. The first table shows the

error in the approximation to the location of the discontinuity by differentiated Fourier

partial sums of degree r = 7 and r = 8, and then their linear combination via formula

(54).

N

2

4

8

16

32

64

128

r = 7 r = 8 linear combination by (54)

2.42(-1) 2.40(-1) 1.82(-1)

6.84(-2) 6.70(-2)1.90(-2)
1.86(-2) 1.81(-2) 1.50(-3)

4.90(-3) 4.76(--3) 1.06(-4)

1.22(-3)1.26(-3)
3.19(-4) 3.11(-4)

7.05(-6)
4.54(-7)

8.05(-5) 7.83(-5) 2.88(-8)
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Here we present a full table of Pdchardson's extrapolation started from the last column

of previous table.

N

2

4

8

16

32

64

128

r= 7,8

1.8(--1)

1.9(-2) 8.0(-3)
1.5(-3) 3.4(-4) 8.9(-5)

1.0(-4) 1.2(-5) 2.3(-6) 9.2(-7)

7.0(-6) 4.4(-7) 4.6(-8) 1.0(-8) 3.6(-9)

4.5(-7)
2.8(-8)

1.4(-8)
4.7(-lO)

8.2(--10)
1.3(--11)

9.6(-11

7.7(-13)

1.2(-ii)

2.2(-14)
1.8(-12
2.5(-14) 2.1(-14)

The following is the error in the approximation to the jumps of the function using

r = 7 and r = 8, and their combination (59).

N

2

4

8

16

32

64

128

r = 7 r = 8 linear combination by (59)

2.86(0) 3.35(0) 5.60(-1)

1.04(0) 1.22(0) 134(-1)

4.46(-I)
2.2o(-1)

5.17(-1)
2.37(-1)

4.55(-2)
1.14(-2)

9.90(--2) 1.13(--1) 2.87(-3)
4.85(--2) 5.55(-2) 7.18(-4)
2.40(--2) 2.74(--2) 1.79(-4)

This table is Richardson's extrapolation applied to data above.

N

2

4

8

16

32

64

128

r= 7,8

5.6(-i)

1.7(-1) 4.5(--2)

4.5(-2) 2.6(-3) 3.5(-3)

1.1(-2) 1.2(-4)

2.8(-3) 2.9(--6)

7.I(-4) 4.4(-7)

1.7(-4) 1.0(-?)

2.2(-4)
1.4(-5)
9.3(-7)
5.8(-8)

1.1(-5)

4.1(-7)
1.1(-8)
3.O(-lO)

6.1(-8)

1.7(-9)

5.6(-11)

2.7(-9)

2.9(--11) 8.3(-12)
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The next example has been considered in [11].

0 ifO<O_<l,

e° if 1 < O < 2,

e if2<8<5,(65) g(O)= cos _
0 if 5 < 8 < 27r.

Applying the suggested algorithm the following results have been obtained. Here we

simply present the largest error in approximating any of the three discontinuities.

N 32 64 128 256 512

Location-error 1.7(-4) 6.1(-7) 1.4(-8) 3.5(-11) 9.7(-14)

8. CONCLUSION

Let us give somecomments on our results.

As we already mentioned, the formula which determines the jumps of a bounded not-

too-highly oscillating function by means of its Fourier series has been known for a long

time. But to our best knowledge it has never been utilized for a numerical approximation

of the locations of discontinuity points.

Theorems 2 and 3 state that it is possible to detect the locations of discontinuities

and the jumps under the condition that a bounded function does not have too high

total oscillation (condition (6)). On the other hand, Fourier series fail to distinguish a

continuous functions from discontinuous one, if the function is too highly oscillating (the

necessity of condition (6)).

It follows from Theorem 4 that identities (5) and (7) represent a powerful tool for the

allocation of the points of discontinuity of an almost arbitrary function - excepting the
minor restriction on the variation of the function and a finite number of discontinuities we

impose no conditions. Still the approximation is of order o(1/n). The factor ([g]mA(g)) -1

confirms a logical observation: the smaller the jump of a function and the distance

between the points of singularity, the more dif_cult it is to detect its location.

Taking into consideration asymptotic expansions (45), (54), (57), and (59), we think

that the method is best suited for a piecewise smooth function with a single discontinuity,

although applying the suggested method of "removing" discontinuities leads to good

results for a function with multiple discontinuities too.

For piecewise smooth functions, we can obtain very high orders of approximation. The

numerical results confirm that high accuracy is indeed attainable with fairly low degree

trigonometric polynomials.

Regarding numerical results, applying expansion (54) for different pairs, we observed

higher accuracy for larger values of r. For instance, the accuracy of the location of

discontinuity is only order of 10 .9 for the function (64) applying (54) and Pdchardson's

extrapolation for r = 2, 3, and r_ = 128. Numerical results confirmed priority of expansion
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formula (54) over (45): we gained three digitsof accuracy. It should be mentioned as

wellthat increasingthe order ofthe partialsums we obtained betterresults:forthe same

function (64) using expansion (54),r = 6,7, combined with Richardson's extrapolation

forn = 512 we achieved an accuracy of 10-2o forthe locationofthe point ofdiscontinuity.

The numerical resultswere obtained from a program written in Ma_ema_ica, which is

availableonlinethrough the third authors home page http :/lw_. cs .unto.edu/ shapiro/.
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